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Abstract. The addition of lithium acetylides to (20R)-20-hydroxypregnane-22- 
carboxaldehydes in the absence and in the presence of BF afforded predomi- 
nantly 20R,22R- or 20R,22S-diols, respectively, characte rstic of ecdysones. i?* 

The addition of nucleophiles to chiral a-hydroxyaldehydes 1 constitutes 

a valuable procedure for the diastereoselective synthesis of 1,2-diols 2. 
1 

In connection with our interest in the partial synthesis of ecdysones, we 

examined the addition of lithium acetylides to (20R)-20-hydroxypregnane-22- 

carboxaldehydes 5 and observed that certain Lewis acids dramatically altered 

the stereoselectivity of the addition process. In particular, the addition of 

boron trifluoride2 altered the usual outcome leading to the threo-diastereomer 

2t and led instead to the erythro-diastereomer 2e. This finding provided a 

convenient solution to the partial synthesis of either the ecdysone or the 

22-epiecdysone side chain. 
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The Darzens condensation of pregnan-20-ones 3 and the subsequent ring 

opening of epoxysulfones 4 furnished the desired substrates, the a-hydroxyal- 

dehydes3 5, in a highly stereoselective reaction. As summarized in Table I, 

the condensation of 5x or 5y with LiC?X(CH3)20THP (10) or BrMgCXC(CH3)20THP 

(11) followed the anticipated stereochemical course to give predominantly the 

20R,22R-diastereomer4 6. According to Cram's "cyclic" model 5 or the Felkin 

model, 6 the transition state leading preferentially to 6 involves nucleophilic 

attack on the "chelated" substrate' from the less hindered direction (as indi- 

cated by the emboldened arrow). 

When boron trifluoride was added to the acetylide 10 prior to the addi- 

tion of 5, this preference for the 20R,22R- diastereomer 6 was inverted and 

the 20R,22S-diastereomer 7 was the principal product. Independent experiments 

established that the predominance of 7x was not due to the selective destruc- 

tion of the epimer 6x or to the epimerization of 6x during the course of the 

condensation. Reetz* has recently reported a similar inversion in the reac- 

tion of crotyltitanium reagents with simple aldehydes in which a non-cyclic 

mechanism was suggested to account for ervthro-diastereoselectivity in the 

presence of boron trifluoride. Our own observations involving a-hydroxyalde- 

hydes are also consistent with a non-cyclic mechanism involving either Cram's 

Ildipolar" model or the Felkin model 6 in which the a-hydroxyaldehyde is trans- 

formed to a boron "ate" complex prior to nucleophilic addition. Other Lewis 

acids (B(OCH3)3, A1C13, etc.) were less effective than boron trifluoride in 

this particular reaction. 

Manipulation of the proparyl alcohols 6 and 7 provided convenient access 

to the side chains 8 and 9, respectively, characteristic of the ecdysones and 

the 22-epiecdysones. The stereochemical assignments of these C-22 epimers 

relied on 13 C NMR data (pyridine-d5) in which the C-22 signal appeared at 

77.1-78 ppm for the 22R-epimer and at 76.0-76.8 for the 22S-epimer. In addi- 

tion, it was important to develop hydrolytic conditions for deprotecting the 

C-25 tetrahydropyranyl ether that would be compatible with a C-14a hydroxyl 

group in a projected synthesis of the natural ecdysones. Standard hydrolytic 

conditions (PPTS, CH30H) fail to remove C-14a tetrahydropyranyl ether- 

protected hydroxyl groups, 9 but we have found that 1:50 70% perchloric acid 

(9.0 equivalents) in methanol cleanly deprotects tetrahydropyranyl ethers at 

either C-25, as in 6 and 7 (90% yield) or at C-14 as in 12 (63% yield) to - 
furnish the desired tertiary alcohols without concomitant elimination. 

Application of this strategy to the partial synthesis of ecdysones will be 

reported in due course. 
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Scheme I. 

3 

XZ Y= 
CH,O CH,O 

a, KOtBu (2.1 es), C1CH2S02Ph (2.1 eq), 1:2 tBuOH-THF, 72h (3x -+ 4x in 56% 

yield; 3y- 4y in 60% yield); b, H20 (5 eq) in 70.5% KOtBu-tBuOH (15 eq) 

followed by 1:l 10% HCl-THF, 72h (4x ----+ 5x in 91% yield; 4y - 5y in 95% 

yield); c, MCZCC(CH3)20THP (see Table I); d, 1:50 70% HC104/CH30H; e, H2 Pt02. 
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Table I. 

Substrate Conditions 
Lewis 
Acid 

Isolated 
Yield 
(%) 

Ratio of 
6 to 7 

5x 

5x 

5Y 

5x 

5x 

5x 

5x 

5x 

10, THF, -26“C 

11, THF, -26'C 

11, THF, -26'C 

10, THF, -26°C 

10, THF, -26'C 

10, THF, -26'C 

10, THF, -26'C 

10, THF, -78OC 

___ 

WBr2 
ZnC12 

Ti(OiPr)4 

BF 
3 

BF3 

91 2.3:1 

76 6.9:1 

87 6.9:1 

80 6.9:1 

76 2.1:1 

78 1.5:1 

37 1.0:13 

40 22s on lY 
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